python 电影分析

 # -*- coding: utf-8 -*-
"""
Apriori exercise.
Created on Sun Oct 26 11:09:03 2017

@author: FWW
"""

import time

# ----222---
def createC1(dataSet):
    '''
    构建初始候选项集的列表,即所有候选项集只包含一个元素,
    C1是大小为1的所有候选项集的集合
    '''
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if [item] not in C1:
                C1.append([item])
    C1.sort()
    return list(map(frozenset, C1))

# ----333---
def scanD(D, Ck, minSupport):
    '''
    计算Ck中的项集在事务集合D的每个transactions中的支持度,
    返回满足最小支持度的项集的集合,和所有项集支持度信息的字典。
    '''
    ssCnt = {}
    for tid in D:
        # 对于每一条transaction
        for can in Ck:
            # 对于每一个候选项集can,检查是否是transaction的一部分
            # 即该候选can是否得到transaction的支持
            if can.issubset(tid):
                ssCnt[can] = ssCnt.get(can, 0) + 1
    numItems = float(len(D))
    retList = []
    supportData = {}
    for key in ssCnt:
        # 每个项集的支持度
        support = ssCnt[key] / numItems

        # 将满足最小支持度的项集,加入retList
        if support >= minSupport:
            retList.insert(0, key)

        # 汇总支持度数据
        supportData[key] = support
    return retList, supportData

# 444
# Aprior算法
def aprioriGen(Lk, k):
    '''
    由初始候选项集的集合Lk生成新的生成候选项集,
    k表示生成的新项集中所含有的元素个数
    '''
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i + 1, lenLk):
            L1 = list(Lk[i])[: k - 2];
            L2 = list(Lk[j])[: k - 2];
            L1.sort();
            L2.sort()
            if L1 == L2:
                retList.append(Lk[i] | Lk[j])
    return retList

# ------------------------1111----
def apriori(dataSet, minSupport=0.5):
    # 构建初始候选项集C1
    C1 = createC1(dataSet)

    # 将dataSet集合化,以满足scanD的格式要求
    D = list(map(set, dataSet))

    # 构建初始的频繁项集,即所有项集只有一个元素
    L1, suppData = scanD(D, C1, minSupport)
    L = [L1]
    # 最初的L1中的每个项集含有一个元素,新生成的
    # 项集应该含有2个元素,所以 k=2
    k = 2

    while (len(L[k - 2]) > 0):
        Ck = aprioriGen(L[k - 2], k)
        Lk, supK = scanD(D, Ck, minSupport)

        # 将新的项集的支持度数据加入原来的总支持度字典中
        suppData.update(supK)

        # 将符合最小支持度要求的项集加入L
        L.append(Lk)

        # 新生成的项集中的元素个数应不断增加
        k += 1
    # 返回所有满足条件的频繁项集的列表,和所有候选项集的支持度信息
    return L, suppData

# 777
def calcConf(freqSet, H, supportData, brl, minConf=0.5):
    '''
    计算规则的可信度,返回满足最小可信度的规则。

    freqSet(frozenset):频繁项集
    H(frozenset):频繁项集中所有的元素
    supportData(dic):频繁项集中所有元素的支持度
    brl(tuple):满足可信度条件的关联规则
    minConf(float):最小可信度
    '''
    prunedH = []
    for conseq in H:
        conf = supportData[freqSet] / supportData[freqSet - conseq]
        if conf >= minConf:
            # print (freqSet - conseq, '-->', conseq, 'conf:', conf)
            brl.append((freqSet - conseq, conseq, conf))
            prunedH.append(conseq)
    return prunedH

# 666
def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.5):
    '''
    对频繁项集中元素超过2的项集进行合并。

    freqSet(frozenset):频繁项集
    H(frozenset):频繁项集中的所有元素,即可以出现在规则右部的元素
    supportData(dict):所有项集的支持度信息
    brl(tuple):生成的规则

    '''
    m = len(H[0])
    if m == 1:
        calcConf(freqSet, H, supportData, brl, minConf)
    # 查看频繁项集是否大到移除大小为 m 的子集
    if len(freqSet) > m + 1:
        Hmp1 = aprioriGen(H, m + 1)
        Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf)
        # 如果不止一条规则满足要求,进一步递归合并
        if len(Hmp1) > 1:
            rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)


def recommendMovies(rules, personal_list, movie_list):
    recommend_list = []
    sup_list = []
    for rule in rules:
        if rule[0] <= personal_list:
            for movie in rule[1]:
                if movie_list[movie - 1] not in recommend_list:
                    recommend_list.append(movie_list[movie - 1])
                    sup_list.append(rule[2])
    for recommend in recommend_list:
        i = recommend_list.index(recommend)
        print('Recommend you to watch', recommend, ',', round(sup_list[i] * 100, 2),
              '% people who is similar to you like it!')


def generateRules(L, supportData, minConf=0.5):
    '''
    根据频繁项集和最小可信度生成规则。

    L(list):存储频繁项集
    supportData(dict):存储着所有项集(不仅仅是频繁项集)的支持度
    minConf(float):最小可信度
    '''
    bigRuleList = []
    for i in range(1, len(L)):
        for freqSet in L[i]:
            # 对于每一个频繁项集的集合freqSet
            H1 = [frozenset([item]) for item in freqSet]
            # 如果频繁项集中的元素个数大于2,需要进一步合并
            if i > 1:
                rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)
            else:
                calcConf(freqSet, H1, supportData, bigRuleList, minConf)
    return bigRuleList

def convert_to_int(value):
    try:
        return int(value)
    except (ValueError, TypeError):
        return 0  # 或者根据需求返回其他默认值
if __name__ == '__main__':
    # 导入数据集
    start_time = time.time()
    file_object = open('ratings.dat')
    movies_object = open('movies.dat')
    personal_object = open('personalRatings.txt')
    file_list = []
    all_the_text = file_object.read()
    origin_list = (line.split('::') for line in all_the_text.split('\n'))
    tem_list = []
    for line in origin_list:
        # print(line[0])
        if line[0] != '':
            if  len(file_list) < convert_to_int(line[0]):
                file_list.append(tem_list)
                tem_list = []
            else:
                # print("ta")
                # print(line[0])
                if int(line[2]) > 3:
                    tem_list.append(int(line[1]))
    with open('movies.dat', 'r', encoding='latin1', errors='ignore') as movies_object:
        movies_text = movies_object.read()
    movies_list = []
    for item in (line.split('::') for line in movies_text.split('\n')):
        # print(item) #空处理
        if item and len(item)>2:  # 检查是否为空行以及包含足够的元素
            # print(item)  # 处理非空的情况
            # print(len(item))
            if item[1] not in movies_list:
                movies_list.append(item[1])
    personal_text = personal_object.read()
    personal_list = []
    for item in (line.split('::') for line in personal_text.split('\n')):
        if item and len(item) > 2:  # 检查是否为空行以及包含足够的元素
            if int(item[2]) > 3:
                personal_list.append(int(item[1]))

    file_object.close()
    movies_object.close()
    personal_object.close()
    print('Read file sucess in', time.time() - start_time, 's')
    # 选择频繁项集
    L, suppData = apriori(file_list, 0.2)
    rules = generateRules(L, suppData, minConf=0.5)
    # print ('rules:\n', rules)
    print('Caculate rules success in', time.time() - start_time, 's')
    recommendMovies(rules, frozenset(personal_list), movies_list)
    print('The program completes in', time.time() - start_time, 's')